中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

l malic acid/breast neoplasms

链接已保存到剪贴板
文章临床试验专利权
7 结果
New copolyesters derived from poly(β,L-malic acid) have been designed to serve as nanoconjugate platforms in drug delivery. 25% and 50% methylated derivatives (coPMLA-Me(25)H(75) and coPMLA-Me(50)H(50)) with absolute molecular weights of 32 600 Da and 33 100 Da, hydrodynamic diameters of 3.0 nm and
Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report the characterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, and nonimmunogenic PMLA [poly(β-l-malic acid)]. The PMLA nanoplatform was synthesized for
OBJECTIVE Temozolomide (TMZ) is a pro-drug releasing a DNA alkylating agent that is the most effective drug to treat glial tumors when combined with radiation. TMZ is toxic, and therapeutic dosages are limited by severe side effects. Targeted delivery is thus needed to improve efficiency and reduce
Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negative breast
Treatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform

Advances in Imaging: Brain Tumors to Alzheimer's Disease.

只有注册用户可以翻译文章
登陆注册
Professor Black and colleagues have been working to improve the quality and sensitivity of imaging in the early detection of conditions from brain tumors to Alzheimer's disease to enhance treatment protocols and patient management. Professor Black et al introduced nanoparticles to improve MRI

Nanoconjugate based on polymalic acid for tumor targeting.

只有注册用户可以翻译文章
登陆注册
A new prototype of polymer-derived drug delivery system, the nanoconjugate Polycefin, was tested for its ability to accumulate in tumors based on enhanced permeability and retention (EPR) effect and receptor mediated endocytosis. Polycefin was synthesized for targeted delivery of Morpholino
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge