中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

litchi chinensis/atrophy

链接已保存到剪贴板
文章临床试验专利权
9 结果

[Development of SSR markers in Litchi( Litchi chinensis)].

只有注册用户可以翻译文章
登陆注册
A total of 100 SSR sequences were isolated and cloned by means of SAM (Selectively Amplified Microsatellite)techniques and another one was obtained by searching the NCBI and EMBL databases. There were 89 SSR sequences used for design of special primers. As a result, the primers were designed at 82
Among the 5 tested litchi (Litchi chinensis Sonn.) cultivars ("Huaizhi", "Guiwei", "Nuomici", "Hongmili" and "Shuijingqiu", "Nuomici" became deteriorated much faster than other cultivars while "Guiwei" fruit was the slowest in the rotting process (Fig. 1A). Fruit deterioration was accompanied by
Litchi fruit (Litchi chinensis Sonn.) is highly perishable after harvest. The shelf life is only 4-6days under ambient temperature storage conditions, which has restricted the development of the litchi industry to a considerable extent. To investigate the molecular mechanisms of litchi fruit
Senescence is a key factor resulting in deterioration of non-climacteric fruit. NAC transcription factors are important regulators in plant development and abiotic stress responses, yet little information regarding the role of NACs in regulating non-climacteric fruit senescence is available. In this
Potassium pyroantimonate precipitation method was used for investigating calcium distribution and cell ultrastructure change during development of pistils of litchi male and female flower. The results showed that at the megasporocyte stage of female flowers, calcium precipitates was located mainly
BACKGROUND Litchi has a high commercial value due to its bright color and rich nutrients. However, it deteriorates with the pericarp turning brown within 1-2 days after harvest. The factors that mediate litchi fruit senescence are complicated. MicroRNAs act as negative regulators involved in almost
The ultrastructural changes of meristematic cell during the degeneration of gynoecium primordium leading to the formation of staminate flower of litchi were followed. Degradation of the cells and transport of the dissolved cytoplasmic components were well ordered. Configurations of rough endoplasmic
The reduction of interfacial interaction and the deterioration of mechanical properties by the introduction of the indispensable paraffin wax is a long-standing problem. To address it, a novel litchi-like core-shell 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)@paraffin wax@polydopamine (PDA)
Phytosynthesis of metal nanoparticles is considered as a safe, cost-effective, and green approach. In this study, silver nanoparticles (AgNPs) were successfully synthesized using the aqueous extract of Lychee (Litchi chinensis) fruit peel and an aqueous solution of silver nitrate (AgNO3). The
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge