中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lobularia libyca/nicotine

链接已保存到剪贴板
文章临床试验专利权
6 结果
The A20/AN1 zinc-finger domain-containing proteins of the stress-associated proteins (SAPs) family are fast emerging as potential candidates for biotechnological approaches to improve abiotic stress tolerance in plants. We identified LmSAP, one of the SAPs genes in Lobularia maritima (L.) Desv., a
Agricultural soil pollution by heavy metals is a severe global ecological problem. We recently showed that overexpression of LmSAP, a member of the stress-associated protein (SAP) gene family isolated from Lobularia maritima, in transgenic tobacco led to enhanced tolerance to abiotic stress. In this
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood.
The relative amounts of the five nucleosides (deoxycytidine, 5-methyldeoxycytidine, deoxyadenosine, deoxyguanosine and thymidine) in the DNA of nine plant species, one plant satellite DNA, and one animal species were determined by high performance liquid chromatography. The method allows the clean
Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge