中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lucilia/glutathione

链接已保存到剪贴板
文章临床试验专利权
5 结果
The glutathione transferases (GSTs) are a large group of enzymes having both detoxication roles and specialist metabolic functions. The present work represents an initial approach to identifying some of these roles by examining the variation of specific members of the family under differing
Three glutathione S-transferases from Lucilia cuprina (Australian sheep blowfly) pupae were purified by affinity chromatography and anion-exchange chromatography. One isoenzyme was composed of M(r)-24,800 subunits, and two isoenzymes had subunits of M(r) 23,900. The M(r)-23,900 subunits showed
Crystals of a glutathione S-transferase from the Australian sheep blowfly Lucilia cuprina have been grown from ammonium sulphate by the hanging drop vapour diffusion method. Successful crystallization required the presence of the inhibitor S-hexylglutathione. The crystals belong to the tetragonal
Spectroscopic and kinetic studies have been performed on the Australian sheep blowfly Lucilia cuprina glutathione S-transferase (Lucilia GST; EC 2.5.1.18) to clarify its catalytic mechanism. Steady state kinetics of Lucilia GST are non-Michaelian, but the quite hyperbolic isothermic binding of GSH
This study was aimed at determining whether, in the absence of a full genetic database for the Sheep Blowfly (Lucilia cuprina) glutathione transferases from this insect could be characterized by cross-database matching of MALDI TOF data with the database for other metazoan organisms. Glutathione
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge