中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lysine hydrochloride/ischemia

链接已保存到剪贴板
文章临床试验专利权
6 结果
BACKGROUND It is generally believed that reactive oxygen species (ROS) formation and nitric oxide (NO) generation by the inducible isoform of nitric oxide synthase (iNOS) are the key mediators of ischemia-reperfusion (IR)-induced damage to the kidney. The present study was designed to investigate
Even though renal hypoxia is believed to play a pivotal role in the development of acute kidney injury, no study has specifically addressed the alterations in renal oxygenation in the early onset of renal ischemia-reperfusion (I/R). Renal oxygenation depends on a balance between oxygen supply and
BACKGROUND Ischemia-reperfusion (IR)-induced nephrotoxicity is associated with proteinuria. There are reports on the involvement of inducible nitric oxide synthase (iNOS) in proteinuria in conjunction with renal disease. This study was designed to investigate the effect of N6-(1-iminoethyl)-L-lysine
The role of nitric oxide (NO) in liver ischemia/reperfusion (I/R) injury remains controversial and few works have shed more information regarding the effect of exogenous (EX) and/or endogenous NO (EN) under conditions of I/R of the liver. We investigated the role of exogenous and endogenous NO and
This study was carried out to elucidate whether the protective activity of (-)-epicatechin 3-O-gallate (ECg) against excessive peroxynitrite (ONOO(-)) production, is distinct from the activity of several well-known free radical inhibitors, the ONOO(-) inhibitors ebselen and uric acid, the superoxide
Development of well-defined nanomedicines is critical for their successful clinical translation. A simple synthesis and purification procedure is established for chemically cross-linked polyion complexes of Cu/Zn superoxide dismutase (SOD1) or catalase with a cationic block copolymer,
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge