中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

mangifera odorata/hypoxia

链接已保存到剪贴板
文章临床试验专利权
页 1 从 46 结果
In woody plants, oxygen transport and delivery via the xylem sap are well described, but the contribution of bark and woody tissue photosynthesis to oxygen delivery in stems is poorly understood. Here, we combined stem chlorophyll fluorescence measurements with microsensor quantifications of bark O2
Nitric oxide (NO) is a gaseous free radical that in diverse organisms performs many signaling and protective functions, such as vasoregulation, inhibition of apoptosis, antioxidation, and metabolic suppression. Increased availability of NO may be especially important during life-history periods when
Freeze tolerance is a critical winter survival strategy for the wood frog, Rana sylvatica. In response to freezing, a number of genes are upregulated to facilitate the survival response. This includes fr10, a novel freeze-responsive gene first identified in R. sylvatica. This study analyzes the
The wood frog (Rana sylvatica) can endure freezing of up to 65% of total body water during winter. When frozen, wood frogs enter a dormant state characterized by a cessation of vital functions (i.e., no heartbeat, blood circulation, breathing, brain activity, or movement). Wood frogs utilize various
The wood frog (Rana sylvatica) exhibits a well-developed natural anoxia and dehydration tolerance. The degree of stress tolerance depends on numerous biochemical adaptations, including stress-induced hypometabolism that helps to preserve long-term viability by reducing ATP demand. We hypothesized
Brevinin-1SY is the only described antimicrobial peptide (AMP) of Rana sylvatica. As AMPs are important innate immune molecules that inhibit microbes, this study examined brevinin-1SY regulation during development and in adult frogs in response to environmental stress. The brevinin-1SY nucleotide
BACKGROUND The wood frog, Rana sylvatica, tolerates freezing as a means of winter survival. Freezing is considered to be an ischemic/anoxic event in which oxygen delivery is significantly impaired. In addition, cellular dehydration occurs during freezing because water is lost to extracellular
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65-70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 degrees C on tissue levels of adenosine 3'-5' cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc),
Natural freezing survival by wood frogs (Rana sylvatica) involves multiple organ-specific changes in gene expression. Screening of a cDNA library made from brain of frozen frogs revealed freeze-responsive up-regulation of the glycolytic enzyme, phosphoglycerate kinase 1 (PGK1). Northern blots showed
Natural freezing survival by the wood frog, Rana sylvatica, involves multiple organ-specific, freeze-responsive changes in gene expression. The present study provides the first report of freeze-responsive genes in brain. Differential screening of a cDNA library made from brain of frozen wood frogs
Wood frogs (Rana sylvatica LeConte) are the major model for studies of natural freeze tolerance by ectothermic vertebrates. Multiple biochemical adaptations support winter freezing survival but, to date, the protective role of chaperone proteins has received little attention. The present study
The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65-70% of total body water to freeze. Freezing is generally considered
Vertebrate freeze tolerance requires multiple adaptations underpinned by specialized biochemistry. Freezing of extracellular water leads to intracellular dehydration as pure water is incorporated into growing ice crystals and also results in the cessation of blood supply to tissues, creating an
The wood frog (Rana sylvatica) is a remarkable species. These frogs can endure prolonged oxygen deprivation as well as dehydration to ~60% of total body water lost and, combining these two abilities, they survive whole body freezing for weeks at a time during the winter. Episodes of
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge