中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

nitrogenase/arachis hypogaea

链接已保存到剪贴板
文章临床试验专利权
6 结果
Eight characters related to nitrogen fixation and pod development measured 30 days after flowering were evaluated for their correct grading of the relative yield performance of 17 genetically diverse lines of groundnut (Arachis hypogaea L.). Each line was assigned a high or low yield status based on
Symbiotic gene diversity and other measures of genetic diversity were examined in Bradyrhizobium isolates that form an effective symbiosis with peanut (Arachis hypogaea). Initially, restriction fragment length polymorphism (RFLP) analysis using a nitrogenase (nif) gene probe was performed on 33
Root nodules in peanut (Arachis hypogaea L.) could directly utilize nitrogen (N) in the atmosphere as N source, which plays an important role in the N supply in peanut. However, little is known about the mechanism of efficient N fixation by root nodule. In this study, 15N tracer
Drought stress is one of the most important environmental factors that affect plant growth and limit biomass production. Most studies focus on drought stress development but the reversibility of the effects receives less attention. Therefore, the present work aims to explore the biological nitrogen
The purified pyocyanin from Pseudomonas aeruginosa TO3 was investigated for its antagonistic activity against Macrophomina phaseolina and as a signaling molecule for development of biofilm by rhizobial strain Ca2. The antagonistic activity of purified pyocyanin, as determined by a dry mass method,
Symbiotic rhizobia differentiate physiologically and morphologically into nitrogen-fixing bacteroids inside legume host nodules. The differentiation is apparently terminal in some legume species, such as peas (Pisum sativum) and peanuts (Arachis hypogaea), likely due to extreme cell swelling induced
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge