中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

okadaic acid/vomiting

链接已保存到剪贴板
文章临床试验专利权
12 结果
Diarrhetic shellfish poisoning (DSP) is a gastrointestinal illness with symptoms such as diarrhea, nausea, vomiting, headache, chills and moderate to severe abdominal pain. DSP has been recognized as a worldwide public health problem, causing great concern to the shellfish industry. Accumulation of
The lipophilic marine biotoxin okadaic acid (OA) represents a natural contaminant produced by algae accumulating in seafood. Acute intoxications result in diarrhetic shellfish poisoning causing symptoms like nausea, vomiting and abdominal cramps. OA was preincubated with liver enzymes present in S9

CYP3A4 activity reduces the cytotoxic effects of okadaic acid in HepaRG cells.

只有注册用户可以翻译文章
登陆注册
The biotoxin okadaic acid (OA), produced by dinoflagellates in marine environment, can accumulate in sponges and shellfish. Consumption of contaminated shellfish induces acute toxic effects such as diarrhea, nausea, vomiting, and abdominal pain. CYP3A4, one of the most important human xenobiotic
The consumption of okadaic acid (OA) contaminated shellfish can induce acute toxic symptoms in humans such as diarrhea, nausea, vomiting and abdominal pain; carcinogenic and embryotoxic effects have also been described. Toxicokinetic studies with mice have shown that high cytotoxic doses of OA can
Okadaic acid (OA), a marine toxin produced by dinoflagellates, can accumulate in various bivalve molluscs. In humans, consumption of OA induces acute toxic effects like diarrhoea, nausea, vomiting and abdominal pain. OA is a potent inhibitor of protein phosphatase 1 (PP1) and 2A (PP2A), enzymes that
The marine toxin okadaic acid (OA) is the main representative of diarrhoeic shellfish poisoning (DSP) toxins. Its ingestion induces nausea, vomiting, diarrhoea and abdominal ache. It has also been found to trigger cellular and molecular effects at low concentrations. Its mechanism of action has not
The marine biotoxin okadaic acid (OA), produced by dinoflagellates, can accumulate in various bivalve molluscs. In humans, oral consumption of shellfish contaminated with OA induces acute toxic effects like diarrhea, nausea, vomiting and abdominal pain. However, tumorigenic and embryotoxic effects
The ingestion of seafood contaminated with the marine biotoxin okadaic acid (OA) can lead to diarrhetic shellfish poisoning with symptoms like nausea, vomiting and abdominal cramps. Both rat and the human hepatic cytochrome P450 monooxygenases (CYP) metabolize OA. However, liver cell toxicity of

An outbreak of diarrhoeic shellfish poisoning in Antwerp, Belgium.

只有注册用户可以翻译文章
登陆注册
In Antwerp, Belgium, 403 cases of diarrhoeic shellfish poisoning were reported after consumption of blue mussels. Symptoms included diarrhoea, vomiting, abdominal pain, and nausea. The analysis of faecal specimens from patients allowed diagnosis exclusions for bacteria and viruses. Mouse-assays
OBJECTIVE This investigation was undertaken in response to an outbreak of suspected shellfish poisoning in Zhejiang Province, China. The objectives of this project were to confirm the outbreak and to identify the aetiology, source and mode of transmission. METHODS A probable case was defined as an
Diarrhetic shellfish poisoning (DSP) is a serious and globally widespread phytoplankton-related seafood illness. Although DSP is rarely life-threatening, it causes incapacitating diarrhea and vomiting with no known medical treatments. In addition, phytoplankton producing DSP toxins have been
Okadaic acid (OA) is a low-molecular-weight marine toxin from shellfish that causes abdominal pain, vomiting and diarrhea, i.e., diarrheic shellfish poisoning. In this study, a ssDNA aptamer that specifically binds to OA with high affinity was obtained via Systematic Evolution of Ligands by
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge