中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pancratistatin/neoplasms

链接已保存到剪贴板
文章临床试验专利权
页 1 从 33 结果
Harsh adverse effects as a result of nonspecific targeting of chemotherapeutics currently pose obstacles in cancer therapy; thus, it would be invaluable to devise novel approaches to specifically target cancer cells. The natural compound pancratistatin (PST) has been shown to preferentially induce
Pancratistatin (PST), a natural compound obtained from the Hawaiian spider lily, is known to be specific and selective in inducing apoptosis in multiple cancer cell lines while sparing noncancerous cells and cell lines. Here we report the ability of PST to induce apoptosis specifically in human
The major challenge in the battle against cancer is the specific targeting of cancer cells. Most chemotherapeutics and radiotherapies induce cancer cell death by inducing DNA damage. These treatments also cause severe side effects by affecting normal cells causing toxicity and mutations that may
Sodium pancratistatin 3,4- O-cyclic phosphate ( 2) is a novel water-soluble synthetic derivative of pancratistatin ( 1), a natural alkaloid constituent of Amaryllidaceae plants, that exhibits good cytostatic and antineoplastic activity but is highly insoluble. Unlike most other natural alkaloids it
BACKGROUND Worldwide, colorectal cancer is ranked as the third most prevalent cancer. The natural compound, pancratistatin, extracted from the spider lily, has previously been shown to target apoptosis in cancer cells lines. This study aimed to investigate the effects of pancratistatin in human
Enhanced mitochondrial stability and decreased dependence on oxidative phosphorylation confer an acquired resistance to apoptosis in cancer cells, but may present opportunities for therapeutic intervention. The compound pancratistatin (PST) has been shown to selectively induce apoptosis in cancer
The major hurdle in the fight against cancer is the non-specific nature of current treatments. The search for specific drugs that are non-cytotoxic to normal cells and can effectively target cancer cells has lead some researchers to investigate the potential anti-cancer activity of natural
The synthesis of 3-deoxydihydrolycoricidine, a key element toward elucidation of the pancratistatin anticancer pharmacophore, is described. Biological evaluation of this compound showed it to be significantly less active against tumor cells than pancratistatin. In addition to those features
Two deoxy-analogues of the anticancer/antiviral agent pancratistatin containing functionality complementary to the minimum structural pharmacophore were synthesized and subjected to anticancer screening. One of the analogues exhibited selective inhibition of certain tumor cell lines but was
The total synthesis of fully functionalized polyhydroxyamide B,C- seco-analogues of the anticancer compound pancratistatin (PST) ( 1) is reported. Key steps include an Evans' MgCl 2-promoted anti-aldol reaction between a functionalized l-threose derivative and ( R)-(+)-oxazolidinone to
Insect-based bioactive components are emerging as novel sources of drugs, effective against various diseases. Inflammation is considered to be an innate immune response developed by different organisms against foreign pathogens and cellular stress. However, repetitive elevated inflammation is
The objective of this study was to determine the efficacy of the natural compound pancratistatin (PST), isolated from the Hymenocallis littoralis, in human melanoma cells. Melanoma is an aggressive form of skin cancer that is commonly fatal if not diagnosed in its early stage of development.
The natural compound pancratistatin (PST), isolated from the Hymenocallis littoralis plant, specifically induces apoptosis in many cancer cell lines. Unlike many other chemotherapeutics, PST is not genotoxic and has minimal adverse effects on non-cancerous cells. However, its availability for
BACKGROUND Pancratistatin, a natural compound extracted from Hymenocallis littoralis, can selectively induce apoptosis in several cancer cell lines. In this ex vivo study, we evaluated the effect of pancratistatin on peripheral blood mononuclear cells obtained from 15 leukemia patients prior to
BACKGROUND Pancratistatin (PST), a compound extracted from an Amaryllidaceae (AMD) family plant, has been shown to specifically induce apoptosis in cancer cells with no/minimal toxic effect on normal cells. A systematic synthetic approach has indicated that the minimum cytotoxic pharmacophore
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge