中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

papillon-lefevre disease/arabidopsis

链接已保存到剪贴板
文章临床试验专利权
页 1 从 122 结果
Most pentatricopeptide repeat (PPR) proteins are involved in organelle post-transcriptional processes, including RNA editing. The PPR proteins include the PLS subfamily, containing characteristic triplets of P, L, and S motifs; however, their editing mechanisms and roles in developmental processes
Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA-binding proteins that form a pervasive family of proteins conserved in yeast, plants, and humans. The plant PPR proteins are grouped mainly into the P and PLS classes. Here, we report the crystal structure of a PLS-class PPR protein
Phenylalanine ammonia lyase (PAL) plays an important role in the biosynthesis of secondary metabolites regulating plant growth response. To date, the evolutionary history of the PAL family in Rosaceae plants remains unclear. In this study, we identified 16 PAL homologous genes in five
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the first step in the phenylpropanoid pathway, and is considered an important regulation point between primary and secondary metabolism. In the present work we analyzed expression of the PAL genes in leaves of Arabidopsis thaliana rosette-stage
Destruxin B and sirodesmin PL are phytotoxins produced by the phytopathogenic fungi Alternaria brassicae (Berk.) Sacc. and Leptosphaeria maculans (asexual stage Phoma lingam), respectively. The molecular interaction of destruxin B and sirodesmin PL with cruciferous and cereal species was
Phenylalanine ammonia-lyase (PAL) catalyzes the first step of the phenylpropanoid pathway, which produces precursors to a variety of important secondary metabolites. Arabidopsis (Arabidopsis thaliana) contains four PAL genes (PAL1-PAL4), but there has been no genetic analysis to assess the
Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production
Hundreds of RNA editing events, that is conversion of cytidines (Cs) to uridines (Us), have been observed in the mitochondrial and plastid transcriptome in vascular plants. Defects of C-to-U RNA editing affect a wide variety of physiological processes. These editing sites are recognized by
In Arabidopsis thaliana, four genes have been annotated as provisionally encoding PAL. In this study, recombinant native AtPAL1, 2, and 4 were demonstrated to be catalytically competent for l-phenylalanine deamination, whereas AtPAL3, obtained as a N-terminal His-tagged protein, was of very low
Organ morphogenesis largely relies on cell division and elongation, which need to be both coordinated between cells and orchestrated with cytoskeleton dynamics. However, components that bridge the biological signals and the effectors that define cell shape remain poorly described. We have addressed
Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene, and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network
Polycomb group proteins play essential roles in transcriptional gene repression during both animal and plant development. Polycomb repression complex 1 (PRC1) is one of the key functional modules in polycomb group silencing. It acts as both a reader of H3K27me3 (histone H3 lysine 27 trimethylation)
Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) is in general a very good catalyst for the amination of fluoro- and chloro-cinnamic acid derivatives yielding halogenated (S)-phenylalanine derivatives with ≥85% conversion and excellent ee values >99%. We have studied the

Mining the Arabidopsis and rice genomes for cyclophilin protein families.

只有注册用户可以翻译文章
登陆注册
Cyclophilins, which possess peptidyl-prolyl isomerase activity, are cellular targets of immunosuppressant drugs and involved in a wide variety of functions. While the Arabidopsis thaliana genome contains the largest number of cyclophilins, the number of plant cyclophilins available in databases is
Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge