中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phosphatase/seizures

链接已保存到剪贴板
页 1 从 449 结果
The mitogen-activated protein (MAP) kinase cascades regulate a variety of cellular activities, including cell growth, proliferation, and apoptosis, and are reported to play a role in the actions of antidepressant treatment. There are a number of different classes of protein phosphatases that could
Recent studies indicate that stimulation of NMDA receptors in cultured hippocampal cells activates MAP kinase. Although the pathway whereby MAP kinase is activated has been been characterized, little is known about the mechanisms that shut off MAP kinase. In the course of analyzing several
Recurrent seizure activity leads to delayed neuronal death as well as to inflammatory responses involving microglia in hippocampal subfields CA1, CA3 and CA4. Since mitogen activated protein (MAP) kinases control neuronal apoptosis and trigger generation of inflammatory cytokines, their activation
We describe a patient diagnosed with lethal perinatal hypophosphatasia with a unique clinical presentation of convulsions that responded to vitamin B6. Genomic DNA sequence analysis of the tissue-nonspecific alkaline phosphatase (TNSALP) gene revealed two missense mutations: a G-to-A transition

Differential changes in CNS phosphatase activities during seizures.

只有注册用户可以翻译文章
登陆注册
Neutral and alkaline phosphatase activities were studied in small synaptosomes isolated from rat brain and cerebellum after administration of the convulsant 3-mercaptopropionic acid (MP). Cerebral cortex phosphatase activity assayed at pH 7.2 in the presence of K+ increased both during and after
Pyridoxine-responsive seizures (PRS) and the role of pyridoxine (PN, vitamin B(6)) in hypophosphatasia (HPP) are incompletely understood. Typically, PRS and HPP are rare, independent, metabolic disorders. In PRS, seizures resist standard anticonvulsants apart from PN, yet have a good prognosis. In
In humans, deficiency of the tissue non-specific alkaline phosphatase (TNAP) gene is associated with defective skeletal mineralization. In contrast, mice lacking TNAP generated by homologous recombination using embryonic stem (ES) cells have normal skeletal development. However, at approximately two
SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a
Febrile seizures (FSs) are the most common types of seizures in young children. However, little is known whether the memory deficits induced by early-life FSs could transmit across generations or not.The memory functions of different generations of FS rats
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and
Conditional deletion of Pten (phosphatase and tensin homolog on chromosome ten) in differentiated cortical and hippocampal neurons in the mouse results in seizures, macrocephaly, social interaction deficits and anxiety, reminiscent of human autism spectrum disorder. Here we extended our previous
Hypophosphatasia (HPP) is a rare metabolic disease with the hallmark finding of deficient serum tissue nonspecific alkaline phosphatase (TNSALP) activity. TNSALP is primarily known for its role in mineralization; hence, HPP is characterized by defective mineralization of bone and/or teeth. TNSALP is
OBJECTIVE The liver plays a major role in the metabolism and elimination of many antiepileptic drugs (AEDs), including perampanel. Some of the metabolites identified for perampanel are likely formed via reactive intermediates, which have the potential to covalently bind to protein and cause
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge