中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

plagiochasma appendiculatum/flavonoid

链接已保存到剪贴板
文章临床试验专利权
6 结果
Flavonoid glucosides, typically generated from aglycones via the action of uridine diphosphate-dependent glycosyltransferases (UGTs), both contribute to plant viability and are pharmacologically active. The properties of UGTs produced by liverworts, one of the basal groups of non-vascular land
The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, play important roles in the regulation of many secondary metabolites including flavonoids. Their involvement in flavonoids synthesis is well established in vascular plants, but not as
Caffeoyl CoA O-methyltransferases (CCoAOMTs), known to be involved in phenylpropanoid metabolism and lignin synthesis, have been characterized from several higher plant species, which also harbor CCoAOMT-like enzymes responsible for methylation of a variety of flavonoids, anthocyanins, coumarins and
Liverworts, a section of the bryophyte plants which pioneered the colonization of terrestrial habitats, produce cyclic bisbibenzyls as secondary metabolites. These compounds are generated via the phenylpropanoid pathway, similar to flavonoid biosynthesis, for which basic helix-loop-helix (bHLH)
CONCLUSIONS A chalcone synthase gene ( PaCHS ) was isolated and functionally characterized from liverwort. The ectopic expression of PaCHS in Marchantia paleacea callus raised the flavonoids content. Chalcone synthase (CHS; EC 2.3.1.74) is pivotal for the biosynthesis of flavonoid and anthocyanin
Previously it has been shown that the caffeoyl coenzyme A O-methyltransferase (CCoAOMT) type enzyme PaF6OMT, synthesized by the liverwort Plagiochasma appendiculatum Lehm. & Lindenb., (Aytoniaceae), interacts preferentially with 6-OH flavones. To clarify the biochemistry and evolution of
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge