中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

poa/抗菌的

链接已保存到剪贴板
文章临床试验专利权
12 结果
Alumina micro-spheres with mesoporous structure called porous aluminium oxide (POA) were prepared through a hydrothermal method using Al2(SO4)3·18H2O followed by a thermal decomposition process. Silver nanocomposites of POA (Ag/POAs) with high biochemical activity were synthesized by sorption of
Coadministering pyrazinamide (PZA) with the xanthine oxidase inhibitor allopurinol increases systemic levels of the active metabolite, pyrazinoic acid (POA), but the effects on bactericidal activity against tuberculosis are unknown. We randomized healthy volunteers to take a single dose of PZA
Pyrazinamide (PZA) is a prodrug requiring conversion to pyrazinoic acid (POA) by an amidase encoded by pncA for in vitro activity. Mutation of pncA is the most common cause of PZA resistance in clinical isolates. To determine whether the systemic delivery of POA or host-mediated conversion of PZA to
The commonly accepted hypothesis explaining the mechanism of action of pyrazinamide (PZA) is based on the assumption that PZA-susceptible Mycobacterium tuberculosis strains produce pyrazinamidase, which hydrolyzes PZA to the antibacterial moiety pyrazinoic acid (POA). It is not clear whether POA has
Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of
Pyrazinamide (PZA), an analog of nicotinamide, is a prodrug that requires conversion to the bactericidal compound pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) activity of nicotinamidase to show activity against Mycobacterium tuberculosis. Mutations leading to a loss of PZase
The pro-drug pyrazinamide is hydrolyzed to pyrazinoic acid (POA) in its use for the treatment of tuberculosis. As a molecule with bactericidal activity, POA binds to the C-terminal S1 domain of ribosomal protein S1 from Mycobacterium tuberculosis (MtRpsACTD_S1) to inhibit
Pyrazinamide (PZA) is active against major Mycobacterium tuberculosis species (M. tuberculosis, M. africanum, and M. microti) but not against M. bovis and M. avium. The latter two are mycobacterial species involved in human and cattle tuberculosis and in HIV coinfections, respectively. PZA is a
The antituberculosis drug pyrazinamide (PZA) needs to be converted into pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) in order to show bactericidal activity against Mycobacterium tuberculosis. M. avium is naturally resistant to PZA. To investigate whether this natural resistance to
Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosynthetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its

The curious characteristics of pyrazinamide: a review.

只有注册用户可以翻译文章
登陆注册
Pyrazinamide (PZA) is an important sterilising tuberculosis drug that helps to shorten the duration of current chemotherapy regimens for tuberculosis. When first discovered, it had activity in murine tuberculosis but no apparent in vitro activity, and its subsequent use in treatment depended largely
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge