中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pteridine/spinacia oleracea

链接已保存到剪贴板
文章临床试验专利权
6 结果
A number of pteridine derivatives stimulate photosynthetic phosphorylation in spinach chloroplasts. In general, tetrahydro or dihydro compounds are highly active, as is one aromatic, naturally occurring compound, biopterin. The physiological characteristics of this photosynthetic phosphorylation are

Pteridines and the function of the photosynthetic reaction center.

只有注册用户可以翻译文章
登陆注册
The photoreduction and interaction with the photosynthetic "reaction center" of 2-amino,4-hydroxy-6-substituted pteridine indicates that these low-potential ( approximately -0.7 v), naturally occurring compounds play a primary role in photosynthetic electron transport. These unconjugated pteridines,
A number of pteridines were examined for activity in promoting photophosphorylation in broken spinach chloroplasts and in stimulating cytochrome c photooxidation in sonicated chloroplasts. Correlation was found between activities for the 2 reactions. Photophosphorylation promoted by pteridines was
1. An enzyme from the leaves of spinach beet (Beta vulgaris L.) that catalyses the hydroxylation of p-coumaric acid to caffeic acid in the presence of ascorbate has been purified about 1000-fold on a protein basis. 2. It is activated by high concentrations of ammonium sulphate and sodium chloride.
Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge