中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

resiniferatoxin/fever

链接已保存到剪贴板
文章临床试验专利权
14 结果
As pretreatment with intraperitoneal capsaicin (8-methyl-N-vanillyl-6-nonenamide, CAP), an agonist of the vanilloid receptor known as VR1 or transient receptor potential channel-vanilloid receptor subtype 1 (TRPV-1), has been shown to block the first phase of lipopolysaccharide (LPS) fever in rats,
OBJECTIVE Thermoregulatory side effects hinder the development of transient receptor potential vanilloid-1 (TRPV1) antagonists as new painkillers. While many antagonists cause hyperthermia, a well-studied effect, some cause hypothermia. The mechanisms of this hypothermia are unknown and were studied
The sympathetic nerve activity (SNA) to brown adipose tissue (BAT) regulates BAT thermogenesis to defend body temperature in cold environments or to produce fever during immune responses. The vagus nerve contains afferents that inhibit the BAT SNA and BAT thermogenesis evoked by skin cooling. We
Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In
Transient receptor potential vanilloid 1 (TRPV1) is activated by a variety of stimulations, such as endogenous ligands and low pH, and is believed to play a role in pain transmission. TRPV1 antagonists have been reported to be effective in several animal pain models; however, some compounds induce
Introduction: In the lower urinary tract (LUT) several members of the TRP superfamily are involved in nociception and mechanosensory transduction. Animal studies have suggested a therapeutic potential of some of these channels, including TRPV1, TRPV4, TRPM8, TRPA1, and TRPM4, for treatment of
Transient receptor potential vanilloid 1 (TRPV1) activation in peripheral sensory nerve is known to be associated with various pain-related diseases, thus TRPV1 has been the focus as a target for drug discovery. In this study, we characterized the pharmacological profiles of

Targeting TRPV1 for pain relief: limits, losers and laurels.

只有注册用户可以翻译文章
登陆注册
BACKGROUND With 336 reviews, the capsaicin receptor TRPV1 arguably represent today's most extensively reviewed analgesic target. TRPV1 is strategically located at the peripheral terminals of primary sensory neurons where pain is generated. TRPV1 as a target for analgesic drugs has been validated in
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new
The transient potential vanilloid 1 receptor (TRPV1) is a calcium-permeable channel responsible for the transduction and modulation of acute and chronic pain signaling. As such, this receptor is a potential target for the treatment of a number of pain disorders. However, AMG517, a TRPV1 antagonist,

TRPV1.

只有注册用户可以翻译文章
登陆注册
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be
Transgenic mice with a small hairpin RNA construct interfering with the expression of transient receptor potential vanilloid 1 (TRPV1) were created by lentiviral transgenesis. TRPV1 expression level in transgenic mice was reduced to 8% while the expression of ankyrin repeat domain 1 (TRPA1) was

Targeting TRP channels for pain relief.

只有注册用户可以翻译文章
登陆注册
Preclinical research has recently uncovered new molecular mechanisms underlying the generation and transduction of pain, many of which represent opportunities for pharmacological intervention. Manipulating temperature-sensitive Transient Receptor Potential (TRP) channels (so-called "thermoTRPs") on

TRPA1 mediates the hypothermic action of acetaminophen.

只有注册用户可以翻译文章
登陆注册
Acetaminophen (APAP) is an effective antipyretic and one of the most commonly used analgesic drugs. Unlike antipyretic non-steroidal anti-inflammatory drugs, APAP elicits hypothermia in addition to its antipyretic effect. Here we have examined the mechanisms responsible for the hypothermic activity
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge