中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ryanodine/hemorrhage

链接已保存到剪贴板
文章临床试验专利权
14 结果
OBJECTIVE The pathophysiologic mechanisms underlying cerebral vasospasm after aneurysmal subarachnoid hemorrhage (aSAH) remain poorly understand. Ryanodine receptors (RYR) are intracellular calcium channels involved in the regulation of vascular smooth muscle cells and cerebrovascular tone and
Subarachnoid hemorrhage (SAH) remains a challenging neurosurgical disease. The ryanodine receptor type 1 Ca2+ channel (RyR1) plays a crucial role in vasoconstriction and hemostasis. Mutations of the encoding gene, RYR1, are known to cause susceptibility to malignant hyperthermia (MH). Recently, a
Subarachnoid hemorrhage decreases the expression of ryanodine receptors and increases the expression of the immunophilin, FK506-binding protein (FKBP)12.6 in cerebrovascular smooth muscle cells, reducing the occurrence of Ca(2+) sparks, limiting negative feedback regulation of cerebrovascular tone
BACKGROUND Cerebral vasospasm is one of the most serious complications after subarachnoid hemorrhage (SAH). The cerebral artery diameter is regulated by complex physiological mechanisms. Among them the regulation of intracellular calcium homeostasis seems to play a crucial role. Recent data suggest
OBJECTIVE Ryanodine receptor 2 (RyR2) is a critical component of intracellular Ca(2+) signaling in vascular smooth muscle cells (VSMCs). The aim of this study was to investigate the role of RyR2 in abnormal vascular reactivity after hemorrhagic shock in rats. METHODS SD rats were hemorrhaged and
Malignant hyperthermia is a potentially fatal hypermetabolic disorder triggered by halogenated anesthetics and the myorelaxant succinylcholine in genetically predisposed individuals. About 50% of susceptible individuals carry dominant, gain-of-function mutations in RYR1 [which encodes ryanodine
OBJECTIVE To investigate whether adenosine A(3) receptors (A(3)AR) stimulation restore vascular reactivity after hemorrhagic shock through a ryanodine receptor (RyR)-mediated and large conductance calcium-activated potassium (BK(Ca)) channel-dependent pathway. METHODS Rat hemorrhagic shock model (40
The present study aimed to investigate the gene functions and expression profiles in perihematomal (PH) brain regions following spontaneous intracerebral hemorrhage. The gene expression profiles were downloaded from the Gene Expression Omnibus database under accession number GSE24265, which includes
Intracellular Ca(2+) release events ('Ca(2+) sparks') and transient activation of large-conductance Ca(2+)-activated potassium (BK) channels represent an important vasodilator pathway in the cerebral vasculature. Considering the frequent occurrence of cerebral artery constriction after subarachnoid

Dantrolene mediates vasorelaxation in cerebral vasoconstriction: a case series.

只有注册用户可以翻译文章
登陆注册
BACKGROUND Cerebral vasoconstriction syndromes such as vasospasm after subarachnoid hemorrhage (SAH) and trauma, or Call-Fleming syndrome are difficult to treat, and can lead to substantial disability and death. Dantrolene, a ryanodine receptor antagonist, inhibits intracellular calcium release from
Fetal anemia causes rapid and profound changes in cardiac structure and function, stimulating proliferation of the cardiac myocytes, expansion of the coronary vascular tree, and impairing early contraction and relaxation. Although hypoxia-inducible factor-1α is sure to play a role, adenosine, a

Flow-induced responses in piglet isolated cerebral arteries.

只有注册用户可以翻译文章
登陆注册
Although cerebral hemorrhage is a widely occurring neurologic disorder thought to be caused by fluctuating blood flow, the response to flow in the neonatal cerebrovasculature has not been characterized. In the present study, we examined the effect of changing flow on middle cerebral artery diameter
A 13-year-old female was found lifeless at home. The autopsy and consecutive histological and toxicological examinations showed blood-rich and edematous lungs and foamy bloody content in the airways. No morphologic pathological findings were seen, especially no bleeding sources. Toxicological
OBJECTIVE The mechanism of arterial vasoconstriction caused by oxyhemoglobin production after subarachnoid hemorrhage was investigated. METHODS Using a fluorescent Ca++ indicator (fura-2 acetoxymethyl ester), the change in the cytosolic intracellular Ca++ concentration, [Ca++]i. was measured in
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge