中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

spirodela polyrhiza/抗生素

链接已保存到剪贴板
文章临床试验专利权
6 结果
The increasing availability of antibiotics in wastewater has created a serious threat to non-target organisms in the environment. The aim of this study was to evaluate the potential toxicity of amoxicillin on duckweed Spirodela polyrhiza during a short-term exposure (7 d). The duckweed was exposed
The phytotoxicity and degradation of ofloxacin (OFX) in duckweed Spirodela polyrhiza based system was estimated in this study. For that, OFX was added in an environmentally relevant range (0.01-1.0 mg L-1) in medium (Hoagland nutrient) and toxicity biomarkers, i.e. changes in plant

High expression of transgene protein in Spirodela.

只有注册用户可以翻译文章
登陆注册
The monocot family Lemnaceae (duckweed) is composed of small, edible, aquatic plants. Spirodela oligorrhiza SP is a duckweed with a biomass doubling time of about 2 days under controlled, axenic conditions. Stably transformed Spirodela plants were obtained following co-cultivation of regenerative
Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity
Silver nanoparticles (AgNPs) are commonly used in consumer products for their antibacterial activity. Silver nanoparticles may adversely influence organisms when released into the environment. The present study investigated the effect of AgNPs on the growth, morphology, and physiology of the aquatic
Silver nanoparticles (AgNPs) are widely used commercially because of their antibacterial properties. Oxidative stress is known to be involved in the toxicity of AgNPs to bacteria, animals, and algae. The authors used Spirodela polyrhiza to investigate whether AgNPs can induce oxidative stress in
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge