中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience Research 2010-Nov

13-Cis-retinoic acid decreases hypothalamic cell number in vitro.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jennifer N Griffin
Daniel Pinali
Kaylan Olds
Na Lu
Lindsay Appleby
Louis Doan
Michelle A Lane

關鍵詞

抽象

13-Cis-retinoic acid (13-cis-RA) causes depression-related behavior in mice. Hypothalamic dysregulation has been implicated in clinical depression. In fact, apoptosis of hypothalamic neurons may lead to depression after myocardial infarction. Our objective was to determine if 13-cis-RA affects cultured hypothalamic cell number. Treatment of GT1-7 hypothalamic cells with 10μM 13-cis-RA for 48h decreased cell growth to 45.6±13% of control. To determine if this decrease in cell number was due to 13-cis-RA acting as an oxidant, cells were treated with 13-cis-RA and ascorbic acid or butylated hydroxyanisole (BHA) for 24 or 48h. Neither antioxidant alleviated the inhibitory affects of 13-cis-RA. In addition, 13-cis-RA treatment did not increase superoxide anion production, indicating 13-cis-RA was not acting as an oxidant. To determine if 13-cis-RA was acting via retinoic acid receptors (RARs) to decrease cell number, GT1-7 cells were treated with 13-cis-RA and the RAR pan-antagonist, AGN 193109. Treatment with the RAR-antagonist blocked the ability of 13-cis-RA to decrease cell number, indicating this phenomenon was a RAR-independent mechanism. We hypothesize that the ability of 13-cis-RA to decrease hypothalamic cell number may contribute to the increased depression-related behaviors observed in mice.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge