中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrine Practice 2015-Nov

ADIPOSITY-RELATED CANCER AND FUNCTIONAL IMAGING OF BROWN ADIPOSE TISSUE.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Prasanna Santhanam
Lilja Solnes
Jarna C Hannukainen
David Taïeb

關鍵詞

抽象

OBJECTIVE

Brown adipose tissue (BAT) is involved in energy dissipation and cytokine production and is potentially beneficial for the human body. The aim of the paper is to review the literature on adiposity-related cancer and functional imaging of BAT.

METHODS

We performed a review on adiposity-related cancer and functional imaging of BAT. We extensively researched papers for information on BAT molecular biology, as well as functional imaging modalities.

RESULTS

Adipose tissue is linked to the development of many cancers. Multiple drugs including fenofibrate, spironolactone, and other substances, as well as experimental agents like β-3 receptor agonists, caffeine, green tea extract, medium chain triglycerides (MCTs), and adenosine are known to stimulate and activate BAT. However, cold and nonshivering thermogenesis are the main activators of BAT. BAT has been detected on both magnetic resonance imaging (MRI) and 18F-fluorodexoxyglucose positron emission tomography (18F-FDG-PET)-based imaging in multiple studies. Different methods of cold stimulation and static and dynamic protocols have been used to detect and image BAT. Factors like sex, fasting or fed state, surface skin temperature, and/or body mass index (BMI) may influence PET-based BAT detection. BAT has also been detected using MRI, (99m)Technetium (Tc)-sestamibi, and 123I-metaiodobenzylguanidine single-photon emission computed tomography/computed tomography (MIBG SPECT/CT).

CONCLUSIONS

Stimulation of BAT offers promise in the management of obesity-related conditions. Tracers like [(15)O]-H2O, [(11)C] acetate, and 18F-fluoro-6-thia-heptadecanoic acid (18F-FTHA) that measure BAT blood flow, oxygen utilization, and nonessential fatty acid (NEFA) uptake, respectively, have been studied in humans. Future studies should focus on BAT tissue generation by altering the genetic pathways of adiposity-linked genes.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge