中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Journal of investigative dermatology 2009-Aug

Anti-acne agents attenuate FGFR2 signal transduction in acne.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Bodo C Melnik
Gerd Schmitz
Christos C Zouboulis

關鍵詞

抽象

Increased fibroblast growth factor receptor-2 (FGFR2) signaling has been proposed to be involved in acne pathogenesis and explains acne lesions in Apert syndrome and unilateral acneiform nevus associated with gain-of-function point mutations of FGFR2. If, indeed, increased FGFR2 signaling plays a major pathogenic role in follicular hyperkeratinization and sebaceous gland hypertrophy in acne, effective anti-acne drugs may attenuate increased FGFR2 signaling. The purpose of this article is to elucidate the hypothesis that known anti-acne agents may operate by downregulation of increased FGFR2 signaling. Anti-androgens suppress FGF-ligand expression, benzoyl peroxide induces FGFR2 downregulation by lysosomal receptor degradation, azelaic acid inhibits mitochondrial ATP formation required for receptor tyrosine kinase phosphorylation, tetracyclines inhibit the expression, and activity of FGFR2b downstream matrix metalloproteinases, and retinoids attenuate the FGFR2 pathway at several regulatory levels of the signal transduction cascade critical for cell cycle control, cell proliferation, differentiation, and lipogenesis. Erythromycin, a P-450 inhibitor, may interfere with FGFR2 signaling by its inhibitory effect on retinoid catabolism. The gain-of-function mutations of FGFR2 in Apert syndrome and unilateral acneiform nevus, and the proposed synergistic inhibitory interactions of anti-acne agents at various levels of the FGFR2-signaling cascade underline the role of FGFR2 signaling in the pathogenesis of acne.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge