中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tumori

Applications of 99mTc-sestamibi in oncology.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
L Maffioli
J Steens
E Pauwels
E Bombardieri

關鍵詞

抽象

Hexakis (2-methoxyisobutylisonitrile) technetium-99m (99mTc-SestaMIBI) is a radiopharmaceutical used in nuclear medicine for myocardial perfusion imaging. In the literature different non-cardiac applications of 99mTc-SestaMIBI have been reported. Clinical studies have been performed also in non-oncologic disease (such as thyroid adenoma, diabetic foot, osteomyelitis, pulmonary actinomycosis, aneurysmal bone cyst. Sudeck's atrophy). Several models for the uptake mechanism of this radiopharmaceutical have been proposed such as binding to an 8-10 kDa cytosolic protein, simple lipid partitioning, or a membrane translocation mechanism involving diffusion and passive transmembrane distribution. Most evidence points in the direction of the third hypothesis. Many studies have indicated that uptake of hexakis (alkylisonitrile) technetium complexes is dependent on mitochondrial and plasma membrane potentials like other lipophilic cations. This explains the initial biodistribution of 99mTc-SestaMIBI to tissues with negative plasma membrane potentials and with relatively high mitochondrial content (like heart, liver, kidney and skeletal muscle tissue). Malignant tumours also possess these properties in order to maintain their increased metabolism. This behaviour encouraged the study of 99mTc-SestaMIBI as an interesting tracer imaging various tumour types: osteosarcoma, brain, lung, breast, nasopharyngeal, parathyroid and thyroid cancer. Recent research on cell cellular physiology has further revealed an active transport of 99mTc-SestaMIBI out of the tumour cells, against the potential gradient. The same mechanism is also responsible for resistance to a structurally and functionally different group of cytotoxic agents such as vinca alkaloids, epipodophyllotoxins, anthracyclins and actinomycin D. This peculiar type of resistance is due to amplification of the mammalian MDR1 gene, located on chromosome 7. For this reason the 99mTc-SestaMIBI uptake in vivo could permit the prediction of the response to the chemotherapy, when the decreased accumulation of 99mTc-SestaMIBI implies the presence of P-gp enriched tissues. In the next future a particular attention should be dedicated to this matter since one of the most important goals of the clinical trials is the demonstration of the usefulness of 99mTc-SestaMIBI for in vivo assessment of multidrug resistance.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge