中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1999-Sep

Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
J K Lin
Y C Liang
S Y Lin-Shiau

關鍵詞

抽象

Tea is a popular beverage. The consumption of green tea is associated with a lower risk of several types of cancer, including stomach, esophagus, and lung. The cancer chemopreventive effect of tea has been attributed to its major phytopolyphenols. The tea polyphenols comprise about one-third of the weight of the dried leaf, and they show profound biochemical and pharmacological activities including antioxidant activities, modulation of carcinogen metabolism, inhibition of cell proliferation, induction of cell apoptosis, and cell cycle arrest. They intervene in the biochemical and molecular processes of multistep carcinogenesis, comprising tumor initiation, promotion, and progression. Several studies demonstrate that most tea polyphenols exert their scavenging effects against reactive oxygen species (ROS); excessive production of ROS has been implicated for the development of cardiovascular diseases, neurodegenerative disorders, and cancer. Recently, we have found that the major tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) suppresses extracellular signals and cell proliferation through epidermal growth factor receptor binding in human A431 epidermoid carcinoma cells; EGCG also blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of the transcription factor NFKB in macrophages. Furthermore, EGCG blocks the cell cycle at the G1 phase in MCF-7 cells. We have demonstrated that EGCG inhibits the activities of cyclin-dependent kinases 2 and 4; meanwhile, EGCG induces the expression of the Cdk inhibitors p21 and p27. These results suggest that tumor promotion can be enhanced by ROS and oxidative mitotic signal transduction, and this enhancement can be suppressed by EGCG or other tea polyphenols.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge