中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Insect Biochemistry and Molecular Biology 2002-Jun

Catecholamine-beta-alanyl ligase in the medfly Ceratitis capitata.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M Pérez
P Wappner
L A Quesada-Allué

關鍵詞

抽象

Dopamine (DA) and norepinephrine (NE) derivatives play an important role in the sclerotization and pigmentation of insect cuticles by serving as precursors for cuticular cross-linking. Protein preparations from prepupae of the medfly, Ceratitis capitata, were able to conjugate beta-alanine with DA producing N-beta-alanyldopamine (NBAD) or with NE, synthesizing N-beta-alanylnorepinephrine (NBANE). The latter reaction has been demonstrated for the first time. Apparent kinetic parameters were obtained for both substrates, DA (V(max)=30.7+/-6.0 pmol min(-1) mg(-1); K(m)=29.5+/-3.5 microM) and NE (V(max)=16.1+/-6.6 pmol min(-1)mg(-1); K(m)=89.0+/-8.3 microM). The same protein seems to be responsible for both enzymatic activities, judging from several criteria like identical behavior under heat inactivation as well as identical Mg2+ and Mn2+ dependent stimulation and Co2+ inhibition. Furthermore, the melanic mutants niger of C. capitata and ebony(4) of D. melanogaster, known to be defective for NBAD synthase, were also unable to synthesize NBANE. The protein preparation acylated tyrosine with much less efficiency, to produce sarcophagine (beta-alanyltyrosine). Strikingly, extracts from the melanic mutants were unable to synthesize sarcophagine. Our results strongly suggest that the enzymatic activity previously known as NBAD synthase is in fact a novel catalytic protein showing broad substrate specificity. We propose to identify it as catecholamine-beta-alanyl ligase.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge