中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2016-Jan

Characterization of glutathione conjugates derived from reactive metabolites of bakuchiol.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Meina Chi
Ying Peng
Jiang Zheng

關鍵詞

抽象

Bakuchiol belongs to a family of monoterpene phenols occurring in plant Psoralea corylifolia L., a traditional herbal medicine. Bakuchiol has also demonstrated multiple pharmacologic activities. However, metabolism of bakuchiol had never been investigated. The major objective of the present study was to study the metabolic pathways of bakuchiol in order to identify potential reactive metabolites. A total of five glutathione (GSH) conjugates (M1-M5) were detected in rat/human liver microsomes containing NADPH, GSH, and bakuchiol. M1 and M2 resulted from GSH conjugated on the phenol ring. M3, M4, and M5 were derived from GSH adducted on the side chain. The results displayed that bakuchiol can be bioactivated by oxidation of the phenol moiety to the corresponding ortho-quinone and by epoxidation of the aliphatic side chain to epoxide metabolites. No bakuchiol-derived GSH conjugates were detected in urine of rats given bakuchiol, but six corresponding cysteinylglycine (Cys-Gly) conjugates and mercapturic acids were observed instead. A 2'-iodoxybenzoic acid-mediated oxidation reaction of bakuchiol in the presence of GSH produced M1 and M2, and m-chloroperoxybenzoicacid-mediated oxidation of bakuchiol trapped with GSH generated M3 and M4. The four synthetic metabolites were detected in microsomal incubations. In addition, recombinant P450 enzyme incubations showed that CYP 1A2 was the predominant P450 responsible for the metabolism of bakuchiol. In summary, our results demonstrated that bakuchiol can be bioactivated to quinone and epoxide metabolites. These findings facilitate the understanding of the mechanisms of bakuchiol-induced cytotoxicity.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge