中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Sciences 2019-May

Characterizing Vascular Dysfunction in Genetically Modified Mice through the Hyperoxia Model.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Luis Rodrigues
Henrique Silva
Hugo Ferreira
Alain-Pierre Gadeau

關鍵詞

抽象

Modelling is essential for a better understanding of microcirculatory pathophysiology. In this study we tested our hyperoxia-mouse model with healthy and non-healthy mice. Animals (n = 41) were divided in groups-a control group, with 8 C57/BL6 non-transgenic male mice, a diabetic group (DB), with 8 C57BLKsJ-db/db obese diabetic mice and the corresponding internal controls of 8 age-matched C57BLKsJ-db/+ mice, and a cardiac hypertrophy group (CH), with 9 FVB/NJ cα-MHC-NHE-1 transgenic mice prone to develop cardiac failure and 8 age-matched internal controls. After anesthesia, perfusion data was collected by laser Doppler flowmetry (LDF) during rest (Phase 1), hyperoxia (Phase 2), and recovery (Phase 3) and compared. The LDF wavelet transform components analysis (WA) has shown that cardiorespiratory, myogenic, and endothelial components acted as main markers. In DB group, db/+ animals behave as the Control group, but WA already demonstrated significant differences for myogenic and endothelial components. Noteworthy was the increase of the sympathetic components in the db/db set, as in the cardiac overexpressing NHE1 transgenic animals, reported as a main component of these pathophysiological processes. Our model confirms that flow motion has a universal nature. The LDF component's WA provides a deeper look into vascular pathophysiology reinforcing the model's reproducibility, robustness, and discriminative capacities.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge