中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Atherosclerosis 2000-Nov

Cholesterol absorption efficiency and sterol metabolism in obesity.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
T A Miettinen
H Gylling

關鍵詞

抽象

Role of enterohepatic cholesterol metabolism in obesity-induced increase of cholesterol synthesis was studied in healthy lean (BMI <24) and overweight (BMI >31) subjects by measuring serum lipids (including plant sterols, cholestanol and cholesterol precursors), cholesterol absorption % (double-label method), sterol balance and biliary lipids. New aspects of sterol metabolism in obesity were as follows: low efficiency of cholesterol absorption, reduced ratios to cholesterol of serum and biliary plant sterols and cholestanol (5alpha-derivative of cholesterol), and a marked increase of serum and biliary cholesterol precursor sterols. Percent of cholesterol absorption was positively related to serum cholestanol and plant sterols, and negatively to cholesterol synthesis, measured by the sterol balance technique or cholesterol precursor sterols in serum or bile. Total and endogenous cholesterol fluxes into the intestine were increased, but owing to low absorption percent, mass of cholesterol absorption was within control limits in the obese subjects. Thus, per gram of their large liver tissue the entry of intestinal cholesterol may even be subnormal. Percent of cholesterol absorption was insignificantly negatively (r=-0.256) related to intestinal cholesterol pool, but significantly to biliary concentrations of cholesterol (r=-0.581), bile acids (r=-0.513) and phospholipids (r=-0.469). Thus, dilution of labeled dietary cholesterol by expanded intestinal cholesterol pool could have contributed to subnormal efficiency of cholesterol absorption, or transfer of labeled dietary cholesterol from intestinal oil phase to micellar phase may be competitively inhibited by expanded biliary secretion, resulting in reduced absorption of dietary cholesterol. These mechanisms could have contributed to changes in metabolism of non-cholesterol sterols, especially of cholestanol and plant sterols.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge