中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2013-May

Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Liguo Jia
Weifeng Xu
Wenrao Li
Nenghui Ye
Rui Liu
Lu Shi
A N M Rubaiyath Bin Rahman
Mingshou Fan
Jianhua Zhang

關鍵詞

抽象

OBJECTIVE

It has previously been shown that proanthocyanidins (PAs) in the seed coat of Arabidopsis thaliana have the ability to scavenge superoxide radicals (O2(-)). However, the physiological processess in PA-deficit seeds are not clear. It is hypothesized that there exist alternative ways in PA-deficient seeds to cope with oxidative stress.

METHODS

The content of hydrogen peroxide (H2O2) and its relevance to the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidases was investigated in both wild-type and PA-deficit mutant seeds. A biochemical staining approach was used to detect tissue localizations of peroxidase activities in PA-deficit mutant seeds.

RESULTS

PA-deficient mutants possess significantly lower levels of H2O2 than the wild-type, despite their higher accumulation of superoxide radicals. Screening of the key antioxidant enzymes revealed that peroxidase activity was significantly over-activated in mutant seeds. This high peroxidase activity was mainly confined to the seed coat zone. Interestingly, neither ascorbate peroxidase nor glutathione peroxidase, just the guaiacol peroxidases (class III peroxidases), was specifically activated in the seed coat. However, no significant difference in peroxidase activity was observed in embryos of either mutants or the wild-type, although gene expressions of several candidate peroxidases were down-regulated in the embryos of PA-deficient seeds.

CONCLUSIONS

The results suggest that enhanced class III peroxidase activity in the seed coat of PA-deficient mutants is an adaptive strategy for seed development and survival.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge