中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Biochemistry and Biotechnology 2015-Nov

Cloning, Expression, and Characterization of Capra hircus Golgi α-Mannosidase II.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jianfei Li
Jiangye Zhang
Bi Lai
Ying Zhao
Qinfan Li

關鍵詞

抽象

Golgi α-mannosidase II (GMII), a key glycosyl hydrolase in the N-linked glycosylation pathway, has been demonstrated to be closely associated with the genesis and development of cancer. In this study, we cloned cDNA-encoding Capra hircus GMII (chGMII) and expressed it in Pichia pastoris expression system. The chGMII cDNA contains an open reading frame of 3432 bp encoding a polypeptide of 1144 amino acids. The deduced molecular mass and pI of chGMII was 130.5 kDa and 8.04, respectively. The gene expression profile analysis showed GMII was the highest expressed gene in the spleen. The recombinant chGMII showed maximum activity at pH 5.4 and 42 °C and was activated by Fe(2+), Zn(2+), Ca(2+), and Mn(2+) and strongly inhibited by Co(2+), Cu(2+), and EDTA. By homology modeling and molecular docking, we obtained the predicted 3D structure of chGMII and the probable binding modes of chGMII-GnMan5Gn, chGMII-SW. A small cavity containing Tyr355 and zinc ion fixed by residues Asp290, His176, Asp178, and His570 was identified as the active center of chGMII. These results not only provide a clue for clarifying the catalytic mechanism of chGMII but also lay a theoretical foundation for subsequent investigations in the field of anticancer therapy for mammals.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge