中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Synapse 1996-Mar

Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
S C Steffensen
M C Wilson
S J Henriksen

關鍵詞

抽象

Mice heterozygous for the semidominant mutation coloboma (Cm/+) display several distinct pathologies including head bobbing, ophthalmic deformation, and locomotor hyperactivity. The Cm/+ mutation comprises a contiguous gene defect which encompasses deletion of the gene Snap encoding the presynaptic nerve terminal protein SNAP-25 that is an integral component of the synaptic vesicle docking and fusion complex. Indeed, SNAP-25 is required for axonal growth and for the regulated release of neurotransmitters at the synaptic cleft. As an extension of our studies on the behavioral deficits exhibited by these mutants, including evaluation of the hyperkinesis and dopamine-related behavioral pharmacology that might be related to attention-deficit hyperactivity disorder in humans, we have studied spontaneous electroencephalographic and evoked potential recordings in the dentate gyrus of halothane-anesthetized Cm/+ and normal (+/+) littermates to evaluate potential physiological abnormalities of synaptic function in these mice. While sensory activation elicited by brief (10 sec) tail-pinch produced 1-2 min of theta rhythmic activity in +/+ mice, theta induction was markedly reduced in Cm/+ mice. There were no significant differences in dentate afferent-evoked population excitatory postsynaptic potential (pEPSP) slopes, pEPSP facilitation, or population spike (PS) amplitudes; however, paired-pulse inhibition of dentate PS amplitudes was significantly increased in Cm/+ mice. Furthermore, although brief high-frequency stimulation of the perforant path produced robust long-term potentiation (LTP) of synaptic responses in the dentate gyrus of +/+ mice, LTP was attenuated in Cm /+ mice. It has been previously demonstrated that dopamine (DA) neurotransmission is essential for induction of one type of hippocampal theta rhythm and also may modulate hippocampal LTP, suggesting that alterations in DA synaptic transmission may underlie the behavioral abnormalities, in particular the hyperactivity, associated with Cm/+ mutant mice.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge