中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2018-Jan

Combined effects of salinity, temperature and hypoxia on Daphnia magna metabolism.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Elba Garreta-Lara
Bruno Campos
Carlos Barata
Silvia Lacorte
Romà Tauler

關鍵詞

抽象

Metabolic changes of Daphnia magna pools due different abiotic factors linked to global climate change (salinity, temperature and hypoxia) were investigated using untargeted GC-MS and advanced chemometric strategies using a three factors two-level full factorial experimental design (DoE). Effects of these three factors and identity of the metabolites whose concentrations changed because of them were investigated. The simultaneous analysis of GC-MS data sets using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) allowed the resolution of the elution and mass spectra profiles of a large number of D. magna metabolites. Changes in peak areas of these metabolites were then analyzed by Principal Component Analysis (PCA), by ANOVA-Simultaneous Component Analysis (ASCA) and by Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), and the combined effects of the three investigated stressors were assessed. Results confirmed the strong influence of increasing environmental salinity levels on the D. magna metabolome. This impact was specially highlighted by changes on the cellular content of carbohydrates, fatty acids, organic acids and amino acid molecules. In contrast, these effects were less significant for the other two factors (temperature and hypoxia) at the moderate stressing experimental conditions investigated in this work when they were not combined with salinity.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge