中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2009-Dec

Comparative characterization of the Arabidopsis subfamily a1 beta-galactosidases.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Dashzeveg Gantulga
Young Ock Ahn
Changhe Zhou
Dorjsuren Battogtokh
David R Bevan
Brenda S J Winkel
Asim Esen

關鍵詞

抽象

The Arabidopsis genome contains 17 predicted beta-galactosidase genes, all of which belong to glycosyl hydrolase (GH) Family 35. These genes have been further grouped into seven subfamilies based on sequence similarity. The largest of these, subfamily a1, consists of six genes, Gal-1 (At3g13750), Gal-2 (At3g52840), Gal-3 (At4g36360), Gal-4 (At5g56870), Gal-5 (At1g45130), and Gal-12 (At4g26140), some of which were characterized in previous studies. We report here the purification and biochemical characterization of recombinant Gal-1, Gal-3, Gal-4 and Gal-12 from Pichiapastoris, completing the analysis of all six recombinant proteins, as well as the isolation and characterization of the native Gal-2 protein from Arabidopsis leaves. Comparison of the relative expression levels of the subfamily a1 beta-galactosidases at the mRNA and protein levels uncovered evidence of differential regulation, which may involve post-transcriptional and post-translational processes. In addition, this study provides further support for the proposed function of the subfamily a1 beta-galactosidases in cell wall modification based on analysis of the organ-specific expression and subcellular localization of Gal-1 and Gal-12. Our study suggests that, despite some differences in individual biochemical characteristics and expression patterns, each member of the family has the potential to contribute to the dynamics of the Arabidopsis plant cell wall.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge