中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science & Technology 2003-Feb

Comparison of the recyclability of flame-retarded plastics.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Takaretu Imai
Stephan Hamm
Klaus P Rothenbacher

關鍵詞

抽象

Mechanical recycling of plastics from waste from electrical and electronical equipment (WEEE) is increasingly expected by regulators and demanded by original equipment manufacturers (CEMs); however, mechanical recycling is generally recognized to be the most economically costly and technically challenging method of recovering WEEE plastics. With 12% of WEEE plastics requiring the use of flame-retardants in order to ensure appropriate levels of consumer fire safety, there is a distinct need for data from comparative tests on recyclability of various flame-retarded plastics. Ten commercially available flame-retarded plastic grades commonly used in electronic equipment (eight "halogen-free" grades and two grades containing brominated flame-retardants (BFRs)) were subjected to two different recycling scenarios. A standard recycling scenario was carried out by repeatedly extruding the materials and an accelerated hydrolysis scenario was carried out to study the influence of humidity from air during use on the process. Both, virgin and recycled materials were tested for a potential formation of polybrominated dibenzodioxins/furans (PBDD/Fs), their mechanical properties were assessed and the fire safety rating was determined. Results indicate that none of the tested materials showed a potential to form the PBDD/Fs regulated by the German Chemicals Banning Ordinance. The halogen-free plastic grades showed a significant deterioration of mechanical properties after recycling, whereas those plastics containing BFRs were able to pass all test criteria, thus maintaining their original properties. With respect to the fire safety rating, none of the eight tested halogen-free plastic grades could maintain their fire safety rating after five recycling loops, whereas both BFR plastics continued to achieve their fire safety ratings. Therefore the tested BFR containing plastic materials showed superior recycling properties compared to the tested halogen-free plastic grades with respect to all investigated parameters.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge