中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research 1997-Jan

Cytotoxic effects of repin, a principal sesquiterpene lactone of Russian knapweed.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M Robles
N Wang
R Kim
B H Choi

關鍵詞

抽象

Repin is the principal sesquiterpene lactone isolated from Russian knapweed (Centaurea repens), a perennial weed found in many parts of the United States. Ingestion of Centaurea repens by horses has been reported to cause a movement disorder simulating Parkinson's disease (PD) and nigrostriatal degeneration, called equine nigrostriatal encephalomalacia (ENE). To understand the mechanisms whereby ingestion of Centaurea repens induces ENE and a PD-like disorder, repin cytotoxicity was examined to explore its pathogenetic relationship to ENE and to PD. Repin was highly cytotoxic to both PC12 cells and mouse astrocytes in a dose- and time-dependent manner. The cytotoxic effects were accompanied by depletion of glutathione (GSH), a rise in the level of reactive oxygen species (ROS) and damage to cellular membranes. Although repin is a highly reactive electrophile that can readily conjugate GSH, GSH depletion may not be the sole mechanism underlying repin cytotoxicity as shown by our study using buthionine sulfoximine, in which severe GSH depletion did not result in a parallel increase in cell death. However, pre-treatment with GSH-glycoside or with lipoic acid provided significant protection from repin-induced cell death. These data suggest that oxidative stress plays a major role in repin cytotoxicity. Since oxidative stress is considered to play a major role in neuronal degeneration accompanied by depletion of mitochondrial GSH and an increase in lipid peroxides in the substantia nigra of PD, further elucidation of mechanisms of repin neurotoxicity may generate clues regarding not only the mechanisms of neuronal degeneration but also the possible role of environmental factors in the pathogenesis of PD.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge