中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2006-Apr

Effects of genetic modification on herbivore-induced volatiles from maize.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jennifer M Dean
Consuelo M De Moraes

關鍵詞

抽象

Large-scale implementation of transgenic crop varieties raises concerns about possible nontarget effects on other organisms. This study examines the effects of genetic modification on plant volatile production and its potential impact on arthropod population dynamics. We compared herbivore-induced volatile emissions from Bacillus thuringiensis Berliner (Bt) maize plants to those from a nontransformed isoline following exposure to various types of leaf damage. When equal numbers of Helicoverpa zea Boddie (Lepidoptera: Noctuidae) larvae fed on Bt and non-Bt maize, volatile emissions were significantly lower in the transgenic plants, which also exhibited less leaf damage. When damage levels were controlled by adding more larvae to Bt plants, the plants' volatile emissions increased but displayed significant differences from those of nontransgenic plants. Significantly higher amounts of linalool, beta-myrcene, and geranyl acetate were released from transgenic maize than from non-Bt plants. Manipulating the duration of feeding by individual larvae to produce similar damage patterns resulted in similar volatile profiles for Bt and non-Bt plants. Controlling damage levels more precisely by mechanically wounding leaves and applying larval regurgitant likewise resulted in similar emission patterns for Bt and non-Bt maize. Overall, changes in the herbivore-induced volatile profiles of Bt maize appeared to be a consequence of altered larval feeding behavior rather than of changes in biochemical plant defense pathways. The implications of these findings for understanding the impacts of plant-mediated cues on pest and natural enemy behavior in transgenic crop systems are discussed.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge