中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Electrophoresis

Electrophoretic analysis of coniferyl alcohol oxidase and related laccases.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
P Udagama-Randeniya
R Savidge

關鍵詞

抽象

Gradient gel electrophoretic methods enabled a distinction to be made between coniferyl alcohol oxidase (CAO) of lignifying cell walls and a pI approximately 9 pine "laccase" recently implicated in lignification (Science 1993 260, 672). Following treatment of a partially purified protein mixture from developing xylem of Pinus strobus with 2-[N-morpholine]ethanesulfonic acid (MES) buffer, isoelectric focusing and sodium dodecyl sulphate-polyacrylamide gel electrophoresis indicated that CAO had been selectively precipitated by MES and thereby purified to electrophoretic homogeneity. Purified CAO was determined to be a cell-wall-bound glycoprotein (38% glycan), M(r) 107,500, pI 7.6, pH and temperature optima 6.3 and 30 degrees C, respectively. By graphite-furnace atomic-absorption analysis, CAO contained one copper atom per protein molecule. Proteins obtained from lignifying cambial derivatives of conifers (family Pinaceae) and from Rhus typhina bark were compared with CAO and the pI approximately 9 pine "laccase" following electrophoresis and Western blotting. For Abies balsamea, Larix laricina, Picea rubens, Pinus banksiana, Pinus taeda, and R. typhina, the isoelectric points of oxidatively active bands were identical to those of purified CAO. In addition, for all species only the pI 7.6 band was immunoreactive with antibodies against periodate-deglycosylated CAO.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge