中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2018-Oct

Engineering terpenoid production through transient expression in Nicotiana benthamiana.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
James Reed
Anne Osbourn

關鍵詞

抽象

Terpenoids are the most structurally diverse class of plant natural products with a huge range of commercial and medical applications. Exploiting this enormous potential has historically been hindered due to low levels of these compounds in their natural sources, making isolation difficult, while their structural complexity frequently makes synthetic chemistry approaches uneconomical. Engineering terpenoid biosynthesis in heterologous host production platforms provides a means to overcome these obstacles. In particular, plant-based production systems are attractive as they provide the compartmentalisation and cofactors necessary for the transfer of functional pathways from other plants. Nicotiana benthamiana, a wild relative of tobacco, has become increasingly popular as a heterologous expression platform for reconstituting plant natural product pathways, because it is amenable to Agrobacterium-mediated transient expression, a scalable and highly flexible process that enables rapid expression of genes and enzymes from other plant species. Here, we review recent work describing terpene production in N. benthamiana. We examine various strategies taken to engineer this host for increased production of the target metabolite. We also look at how transient expression can be utilised for rapid generation of molecular diversity, including new-to-nature products. Finally, we highlight current issues surrounding this expression platform and discuss the future directions and developments which will be needed to fully realise the potential of this system.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge