中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology and Industrial Health 2016-Sep

Evaluation of genome damage in subjects occupationally exposed to possible carcinogens.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Davor Zeljezic
Marin Mladinic
Nevenka Kopjar
Azra Hursidic Radulovic

關鍵詞

抽象

In occupational exposures, populations are simultaneously exposed to a mixture of chemicals. We aimed to evaluate DNA damage due to possible carcinogen exposure (phenylhydrazine, ethylene oxide, dichloromethane, and 1,2-dichloroethane) in lymphocytes of pharmaceutical industry workers from the same production line. Population comprised 16 subjects (9 females and 7 males) who were exposed to multiple chemicals for 8 months. Genome damage was assessed using alkaline comet assay, micronucleus assay, and comet assay coupled with fluorescent in situ hybridization (comet-FISH). After 8 months of exposure, the issue of irregular use of all available personal protective equipment (PPE) came into light. To decrease the risk of exposure, strict use of PPE was enforced. After 8 months of strict PPE use, micronuclei frequency and comet assay parameters in lymphocytes of pharmaceutical workers significantly decreased compared with prior period of irregular PPE use. Comet-FISH results indicated a significant shift in distribution of signals for the TP 53 gene toward a more frequent occurrence in the comet tail. Prolonged exposure to possible carcinogens may hinder DNA repair mechanisms and affect structural integrity of TP 53 Two indicators of loss of TP 53 gene integrity have risen, namely, TP 53 fragmentation rate in lymphocytes with persistently elevated primary damage and incidence of TP 53 deletions in undamaged lymphocytes.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge