中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brazilian Journal of Microbiology 2014

Genome-wide transcription analyses in Mycobacterium tuberculosis treated with lupulone.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jian Wei
Junchao Liang
Qiyun Shi
Peng Yuan
Rizeng Meng
Xudong Tang
Lu Yu
Na Guo

關鍵詞

抽象

Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, still causes higher mortality than any other bacterial pathogen until now. With the emergence and spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR-TB) strains, it becomes more important to search for alternative targets to develop new antimycobacterial drugs. Lupulone is a compound extracted from Hops (Hurnulus lupulus), which exhibits a good antimicrobial activity against M. tuberculosis with minimal inhibitory concentration (MIC) value of 10 μg/mL, but the response mechanisms of lupulone against M. tuberculosis are still poorly understood. In this study, we used a commercial oligonucleotide microarray to determine the overall transcriptional response of M. tuberculosis H37Rv triggered by exposure to MIC of lupulone. A total of 540 genes were found to be differentially regulated by lupulone. Of these, 254 genes were upregulated, and 286 genes were downregulated. A number of important genes were significantly regulated which are involved in various pathways, such as surface-exposed lipids, cytochrome P450 enzymes, PE/PPE multigene families, ABC transporters, and protein synthesis. Real-time quantitative RT-PCR was performed for choosed genes to verified the microarray results. To our knowledge, this genome-wide transcriptomics approach has produced the first insights into the response of M. tuberculosis to a lupulone challenge.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge