中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human Genetics

Genomic structure and expression analysis of the spastic paraplegia gene, SPG7.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
C Settasatian
S A Whitmore
J Crawford
R L Bilton
A M Cleton-Jansen
G R Sutherland
D F Callen

關鍵詞

抽象

SPG7 is a newly identified gene involved in an autosomal recessive form of hereditary spastic paraplegia (HSP), a genetically heterogeneous group of neurodegenerative disorders. This gene encodes a protein characterized as a nuclear-encoded mitochondrial metalloprotease. The present report describes the genomic structure of the SPG7 gene. It is organized into 17 exons ranging from 78 to 242 bp and spans approximately 52 kb within three overlapping cosmids. The exon/intron boundaries and all splice junctions are consistent with the published consensus sequences for donor and acceptor sites. The provided genomic structure of SPG7 should facilitate the screening for mutations in this gene in patients with HSP and other related mitochondrial disease syndromes. SPG7 has been mapped to chromosome 16q24.3, a region of frequent loss of heterozygosity (LOH) seen in sporadic breast and prostate cancer. We have performed single-strand conformation polymorphism analysis of ten exons of this gene in a number of sporadic breast cancer samples showing LOH at 16q24.3. No mutations were detected; only single nucleotide polymorphisms were observed in exon 11, intron 7, intron 10 and intron 12. An expression analysis study has revealed the differential expression of SPG7 mRNA in various tissues and at different developmental stages.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge