中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2019-Sep

Glucose consumption assay discovers coptisine with beneficial effect on diabetic mice.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Li-Li Shi
Wei-Hua Jia
Li Zhang
Chun-Yang Xu
Xi Chen
Lin Yin
Nuo-Qi Wang
Lian-Hua Fang
Gui-Fen Qiang
Xiu-Ying Yang

關鍵詞

抽象

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge