中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Sports Sciences 2016

Graded hypoxia and blood oxidative stress during exercise recovery.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Bridget Peters
Christopher Ballmann
Graham Mcginnis
Erin Epstein
Hayden Hyatt
Dustin Slivka
John Cuddy
William Hailes
Charles Dumke
Brent Ruby

關鍵詞

抽象

Altitude exposure and exercise elicit oxidative stress in blood; however, exercise recovery at 5000 m attenuates oxidative stress. The purpose was to determine the altitude threshold at which blood oxidative stress is blunted during exercise recovery. Twelve males 18-28 years performed four-cycle ergometry bouts (60 min, 70% VO2max, at 975 m). In a randomised counterbalanced crossover design, participants recovered 6 h at 0, 1667, 3333 and 5000 m in a normobaric hypoxia chamber (recovery altitudes were simulated by using a computerised system in an environmental chamber by lowering the partial pressure of oxygen to match that of the respective altitude). Oxygen saturation was monitored throughout exercise recovery. Blood samples obtained pre-, post-, 1 h post- and 5 h post-exercise were assayed for ferric-reducing antioxidant plasma, Trolox equivalent antioxidant capacity, uric acid, lipid hydroperoxides and protein carbonyls. Muscle biopsies obtained pre and 6 h were analysed by real-time polymerase chain reaction to quantify expression of hemeoxgenase 1, superoxide dismutase 2 and nuclear factor (euthyroid-derived 2)-like factor. Pulse oximetry data were similar during exercise, but decreased for the three highest recovery elevations (0 m = 0%, 1667 m = -3%; 3333 m = -7%; 5000 m = -17%). A time-dependent oxidative stress occurred following exercise for all variables, but the two highest recovery altitudes partially attenuated the lipid hydroperoxide response (0 m = +135%, 1667 m = +251%, 3333 m = +99%; 5000 m = +108%). Data may indicate an altitude threshold between 1667 and 3333 m, above which the oxidative stress response is blunted during exercise recovery.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge