中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Chemistry Chemical Physics 2016-Jul

HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Baiping Ren
Binbo Jiang
Rundong Hu
Mingzhen Zhang
Hong Chen
Jie Ma
Yan Sun
Lingyun Jia
Jie Zheng

關鍵詞

抽象

Amyloid deposits of misfolded amyloid-β protein (Aβ) on neuronal cells are a pathological hallmark of Alzheimer's disease (AD). Prevention of the abnormal Aβ aggregation has been considered as a promising therapeutic strategy for AD treatment. To prevent reinventing the wheel, we proposed to search the existing drug database for other diseases to identify potential Aβ inhibitors. Herein, we reported the inhibitory activity of HP-β-cyclodextrin (HP-β-CD), a well-known sugar used in drug delivery, genetic vector, environmental protection and treatment of Niemann-Pick disease type C1 (NPC1), against Aβ1-42 aggregation and Aβ-induced toxicity, with the aim of adding a new function as a sugar-based Aβ inhibitor. Experimental data showed that HP-β-CD molecules were not only nontoxic to cells, but also greatly inhibited Aβ fibrillization and reduced Aβ-induced toxicity in a concentration-dependent manner. At an optimal molar ratio of Aβ : HP-β-CD = 1 : 2, HP-β-CD enabled the reduction of 60% of Aβ fibrils and increased the cell viability to 92%. Such concentration-dependent inhibitor capacity of HP-β-CD was likely attributed to several combined effects, including the enhancement of Aβ-HP-β-CD interactions, prevention of structural transition of Aβ peptides towards β-sheet structures, and reduction of self-aggregation of HP-β-CD. In parallel, molecular simulations further revealed the atomic details of HP-β-CD interacting with the Aβ oligomer, showing that HP-β-CD had a high tendency to interact with hydrophobic residues of Aβ in two β-strands and the N-terminal tail. More importantly, we identified that the inner hydrophobic cavity of HP-β-CD was a key active site for Aβ inhibition. Once the inner cavity of HP-β-CD was blocked by a small hydrophobic molecule of ferulic acid, HP-β-CD completely lost its inhibition capacity against Aβ. Given the already established pharmaceutical functions of HP-β-CD in drug delivery, our findings suggest that HP-β-CD has great potential to be designed as a sugar-based Aβ inhibitor.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge