中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medical Entomology 2019-Oct

Head Louse Feces: Chemical Analysis and Behavioral Activity.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
F Galassi
M Picollo
P Gonzalez-Audino

關鍵詞

抽象

Human head lice Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) are insect parasites closely associated with humans, feeding on the blood of their hosts and causing them skin irritation and probable secondary infections. Despite being a severe nuisance, very few studies have reported on intraspecific chemical communication in head lice. Here, we evaluated the attractive response of head lice to the volatile compounds and solvent extracts from their feces. We also chemically analyzed the main volatile components of these feces and those of the feces' extracts. Head lice were attracted to the methanol extract of their feces but not to the hexane or dichloromethane extracts, suggesting the polar nature of bioactive chemicals present in head louse feces. Follow-up chemical identifications, in fact, showed the presence of hypoxanthine, uric acid, and another purine tentatively identified as either guanine or iso-guanine. Additionally, head lice were significantly attracted by volatiles emitted from samples containing feces. The volatiles emanated from feces alone contained 19 identified substances: 2-pentanone, hexanal, heptanal, 3-methyl-3-buten-1-ol, octanal, sulcatone, nonanal, acetic acid, 2-ethyl-1-hexanol, decanal, 1-octanol, butyric acid, 1-nonanol, hexanoic acid, octanoic acid, 2,6-dimethyl-7-octen-2-ol, 2-undecanone, geranylacetone, and hexadecane. The major compounds found were decanal, nonanal, hexanal, and acetic acid, together representing approximately 60% of the identified compounds. This work represents the first chemical evidence of intraspecies communication among head lice. The results support the existence of active substances present in the feces of P. humanus capitis that may be involved in its aggregation behavior.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge