中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Immunology 2019-Aug

High fructose-induced metabolic changes enhance inflammation in human dendritic cells.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
N Jaiswal
S Agrawal
A Agrawal

關鍵詞

抽象

Dendritic cells (DCs) are critical antigen-presenting cells which are the initiators and regulators of the immune response. Numerous studies support the idea that dietary sugars influence DC functions. Increased consumption of fructose has been thought to be the leading cause of metabolic disorders. Although evidence supports their association with immune dysfunction, the specific mechanisms are not well understood. Fructose is one of the main dietary sugars in our diet. Therefore, here we compared the effect of fructose and glucose on the functions of human DCs. High levels of D-fructose compared to D-glucose led to activation of DCs in vitro by promoting interleukin (IL)-6 and IL-1β production. Moreover, fructose exposed DCs also induced interferon (IFN)-γ secretion from T cells. Proinflammatory response of DCs in high fructose environment was found to be independent of the major known metabolic regulators or glycolytic control. Instead, DC activation on acute exposure to fructose was via activation of receptor for advanced glycation end product (RAGE) in response to increased accumulation of advanced glycation end products (AGE). However, chronic exposure of DCs to high fructose environment induced a shift towards glycolysis compared to glucose cultured DCs. Further investigations revealed that the AGEs formed by fructose induced increased levels of inflammatory cytokines in DCs compared to AGEs from glucose. In summary, understanding the link between metabolic changes and fructose-induced DC activation compared to glucose has broad implications for immune dysfunction associated with metabolic disorders.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge