中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 1997-May

Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
W I Rosenblum

關鍵詞

抽象

This review describes histopathologic observations made with both light and electron microscopy using both conventional staining techniques and histochemistry. Several conditions are analyzed: Ischemic cell change; delayed neuronal death; selective vulnerability. The histopathologic support for the calcium hypothesis and for the excitotoxic hypothesis explaining neuronal death is also reviewed. The findings lead to several suggestions relevant to attempts at developing interventional therapies administered after the onset of ischemia/hypoxia. (1) Except in gerbils, delayed neuronal death and more rapid neuronal death appear to be on the same continuum of cellular events. The lag between ischemia and either onset or termination of these shared events depends upon the severity and/or duration of ischemia/hypoxia. We still do not know whether the "delay," when it occurs, is a delay between ischemia and initiation of the lethal sequence or is, instead, a delay between an immediate initiation of the sequence and its lethal termination. (2) Selective vulnerability (e.g., of CA1 sector in hippocampus) is only relative. The changes are again those of ischemic cell change and are identical to the changes seen elsewhere in more severe ischemia. (3) There is histopathologic support for both the calcium hypothesis and for the cytotoxic hypothesis. Indeed, there is histopathologic support linking the two hypotheses and linking these mechanisms to the appearance of ischemic cell change. However, the histopathologic data are surprisingly sparse. The role of either hypothesis in explaining neuronal death in all areas of brain, in all types of ischemic insult, and at all times following such an insult remains to be established. (3) Apoptosis may be an important mode of neuronal death following ischemia. It differs from acute ischemic cell change; nevertheless, both calcium overload and/or excitotoxic neurotransmitters may trigger apoptosis. (4) Third cell change has been described: Eosinophilic neurons that are not shrunken and whose nuclei are not pyknotic but contain clumped chromatin. The pathogenesis and fate of these neurons remains uncertain. It is possible that they represent early apoptotic neurons. Adequate assessment of apoptosis and its relationship (to both these neurons and to neurons displaying classical ischemic cell change) may depend upon dual staining with conventional aniline dyes and with histochemical techniques designed to detect intranuclear fragments of DNA.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge