中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2008-Dec

Identification of soybean microRNAs and their targets.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Baohong Zhang
Xiaoping Pan
Edmund J Stellwag

關鍵詞

抽象

The microRNAs (miRNAs) are a newly identified class of small non-protein-coding regulatory RNA. Using comparative genomics, we identified 69 miRNAs belonging to 33 families in the domesticated soybean (Glycine max) as well as five miRNAs in the soybean wild species Glycine soja and Glycine clandestine. TaqMan((R)) MicroRNA Assay analyses demonstrated that these miRNAs were differentially expressed in soybean tissues, with certain classes expressed preferentially in both a spatiotemporal and a tissue-specific manner. Detailed sequence analyses revealed that soybean pre-miRNAs vary in length from 44 to 259 nt with an average of 106 +/- 45 nt, harbor mature miRNAs that differ in their physical location within the pre-miRNAs, and encode more than a single mature miRNA. Comparative sequence analyses of soybean miRNA sequences showed that uracil is the dominant base in the first position at the 5' end of the mature miRNAs while cytosine is dominant at the 19th position, which is indicative that these two bases may have an important functional role in miRNA biogenesis and/or miRNA-mediated gene regulation. Soybeans were unique among plants in the frequency of occurrence of miRNA clusters. For the first time, antisense miRNAs were identified in plants. The five antisense miRNAs and their sense partners from soybean belonged to three miRNA families (miR-157, miR-162 and miR-396). Antisense miRNAs were also identified in soybean wild species. Mature antisense miRNA products appeared to have 1-3 nucleotide changes compared to their sense partners, which suggests that both strands of a miRNA gene can produce functional mature miRNAs and that antisense transcripts may differ functionally from their sense partners. Based on previously established in silico methods, we predicted 152 miRNA-targeted mRNAs, which included a large percentage of mRNAs that encode transcription factors that regulate plant growth and development as well as a lesser percentage of mRNAs that encode environmental signal transduction proteins and central metabolic processes.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge