中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2016-Jan

Insight of Saffron Proteome by Gel-Electrophoresis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Gianluca Paredi
Samanta Raboni
Francesco Marchesani
Stella A Ordoudi
Maria Z Tsimidou
Andrea Mozzarelli

關鍵詞

抽象

Saffron is a spice comprised of the dried stigmas and styles of Crocus sativus L. flowers and, since it is very expensive, it is frequently adulterated. So far, proteomic tools have never been applied to characterize the proteome of saffron or identify possible cases of fraud. In this study, 1D-Gel Electrophoresis was carried out to characterize the protein profile of (i) fresh stigmas and styles of the plant; (ii) dried stigmas and styles from different geographical origins (Spanish, Italian, Greek and Iranian) that had been stored for various periods of time after their processing; and (iii) two common plant adulterants, dried petals of Carthamus tinctorius L. and dried fruits of Gardenia jasminoides Ellis. A selective protein extraction protocol was applied to avoid interference from colored saffron metabolites, such as crocins, during electrophoretic analyses of saffron. We succeeded in separating and assigning the molecular weights to more than 20 proteins. In spite of the unavailability of the genome of saffron, we were able to identify five proteins by Peptide Mass Fingerprinting: phosphoenolpyruvate carboxylase 3, heat shock cognate 70 KDa protein, crocetin glucosyltransferase 2, α-1,4-glucan-protein synthase and glyceraldehydes-3-phosphate dehydrogenase-2. Our findings indicate that (i) few bands are present in all saffron samples independently of origin and storage time, with amounts that significantly vary among samples and (ii) aging during saffron storage is associated with a reduction in the number of detectable bands, suggesting that proteases are still active. The protein pattern of saffron was quite distinct from those of two common adulterants, such as the dried petals of Carthamus tinctorius and the dried fruits of Gardenia jasminoides indicating that proteomic analyses could be exploited for detecting possible frauds.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge