中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS Neglected Tropical Diseases 2015-Jan

Metabolic responses to Orientia tsutsugamushi infection in a mouse model.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jeeyoun Jung
Youngae Jung
Byoungchul Gill
Changhun Kim
Kyu-Jam Hwang
Young-Ran Ju
Hye-Ja Lee
Hyuk Chu
Geum-Sook Hwang

關鍵詞

抽象

Tsutsugamushi disease is an infectious disease transmitted to humans through the bite of the Orientia tsutsugamushi-infected chigger mite; however, host-pathogen interactions and the precise mechanisms of damage in O. tsutsugamushi infections have not been fully elucidated. Here, we analyzed the global metabolic effects of O. tsutsugamushi infection on the host using 1H-NMR and UPLC-Q-TOF mass spectroscopy coupled with multivariate statistical analysis. In addition, the effect of O. tsutsugamushi infection on metabolite concentrations over time was analyzed by two-way ANOVAs. Orthogonal partial least squares-discriminant analysis (OPLS-DA) showed distinct metabolic patterns between control and O. tsutsugamushi-infected mice in liver, spleen, and serum samples. O. tsutsugamushi infection caused decreased energy production and deficiencies in both remethylation sources and glutathione. In addition, O. tsutsugamushi infection accelerated uncommon energy production pathways (i.e., excess fatty acid and protein oxidation) in host body. Infection resulted in an enlarged spleen with distinct phospholipid and amino acid characteristics. This study suggests that metabolite profiling of multiple organ tissues and serum could provide insight into global metabolic changes and mechanisms of pathology in O. tsutsugamushi-infected hosts.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge