中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Gastroenterology and Hepatology 2004-Nov

Mitochondrial injury in steatohepatitis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Dominique Pessayre
Bernard Fromenty
Abdellah Mansouri

關鍵詞

抽象

Rich diet and lack of exercise are causing a surge in obesity, insulin resistance and steatosis, which can evolve into steatohepatitis. Patients with non-alcoholic steatohepatitis have increased lipid peroxidation, increased tumour necrosis factor-alpha (TNF-alpha) and increased mitochondrial beta-oxidation rates. Their in-vivo ability to re-synthesize ATP after a fructose challenge is decreased, and their hepatic mitochondria exhibit ultrastructural lesions, depletion of mitochondrial DNA and decreased activity of respiratory chain complexes. Although the mechanisms for these effects is unknown, the basal cellular formation of reactive oxygen species (ROS) may oxidize fat deposits to cause lipid peroxidation, which damages mitochondrial DNA, proteins and cardiolipin to partially hamper the flow of electrons within the respiratory chain. This flow may be further decreased by TNF-alpha, which can release cytochrome c from mitochondria. Concomitantly, the increased mitochondrial fatty acid beta-oxidation rate augments the delivery of electrons to the respiratory chain. Due to the imbalance between a high electron input and a restricted outflow, electrons may accumulate within complexes I and III, and react with oxygen to form the superoxide anion radical. Increased mitochondrial ROS formation could in turn directly oxidize mitochondrial DNA, proteins and lipids, enhance lipid peroxidation-related mitochondrial damage, trigger hepatic TNF-alpha formation and deplete antioxidants, thus further blocking electron flow and further increasing mitochondrial ROS formation. Mitochondrial dysfunction plays an important role in liver lesions, through the ROS-induced release of both biologically active lipid peroxidation products and cytokines. In particular, the up-regulation of both TNF-alpha and Fas triggers mitochondrial membrane permeability and apoptosis. The ingestion of apoptotic bodies by stellate cells stimulates fibrogenesis, which is further activated by lipid peroxidation products and high leptin levels. Chronic apoptosis is compensated by increased cell proliferation, which, together with oxidative DNA damage, may cause gene mutations and cancer.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge