中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2001-Jul

Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
P de la Haba
E Agüera
L Benítez
J M. Maldonado

關鍵詞

抽象

Nitrate reductase (NR) (EC 1.6.6.1) activity and NR activation state, i.e. activity in the presence of Mg(2+) relative to activity in the absence of Mg(2+), in cucumber (Cucumis sativus) leaves increased in the light and decreased in the dark. In contrast to leaves, NR activation state in the roots did not show light/dark-dependent changes. Root NR was activated by anoxia or by addition of uncoupler (CCCP) or mannose. These treatments decreased ATP levels in root tissue. On the contrary, high oxygen supply promoted some NR inactivation. When an extract from anoxic roots was preincubated with ATP, NR was gradually inactivated. Subsequent addition of 5'-AMP resulted in a remarkable reactivation of the enzyme. NR extracted from hyperoxygenated roots was activated by preincubation with 5'-AMP, and the process was reversed by ATP. These results suggest the participation of adenine nucleotides on the in vivo modulation of NR activity in cucumber roots. NR was activated in vivo by cellular acidification and inactivated by alkalinisation. The acid-induced activation of NR was greatly prevented by okadaic acid, a protein phosphatase inhibitor. Our data indicate that, as in barley roots, anoxia, uncouplers, and mannose feeding activate cucumber root NR, at least partly, by enhancing NR dephosphorylation via a decrease in the internal level of ATP and a concomitant cellular acidification.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge